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1. Introduction

A'The objective of the research undertaken was to provide a theory of 5
consolidation of fine-grained soils of sufficient generality to enable

predictions to be made in engineering situations where the sediment is so

soft that allowance must be made for changes in material properties

during the progress of consolidation, where large strains and

displacements must occur, account being taken of pore water flow in two

or three dimensions.

The study proceeded in two Stages. The first Stage involved a

critical examination of presently available theories of consolidation

which were modified and extended to meet the objective of the research.

The aim in Stage I was to develop mathematical equations governing the

consolidation process based on physical assumptions which accord with the

known behavior of soft sediments.

In Stage II numerical procedures and associated algorithms were

considered based on the analysis which would permit prediction of the

distribution and time variation within the medium of quantities of

engineering interest, namely: the pore water pressure, the effective

stresses and the void ratio.

2. Theories of Consolidation: A Brief Survey

The mechanism of the consolidation process in fine-grained soils and

its expression in analytical form were given first by Terzaghi in 1923

(I). The theory was restricted to pore water flow in one (Cartesian)

dimension but as was recently pointed out did take some account of large

strains (2). It was aimed at providing a means for predicting the

progress of settlement in uniformly loaded clay layers. Since that time

the theory of one-dimensional consolidation has been greatly extended to

take account of non-linear behavior, including the variation during E'

consolidation of the coefficients of permeability and compressibility,

and other effects associated with large strain and deformation (see, for
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example, 3, 4, 5) and this development was made possible by the intrinsic

simplicity of one-dimensional deformation.

The problems of consolidation which face the civil engineer are

rarely one-dimensional and a need soon developed for a more general

formulation of the theory which would, for example, allow the settlement

of structures to be predicted or sand drain installations to be

rationally designed: both cases where soil deformation and pore water

flow occur in three dimensions. Severe difficulties were soon

encountered in this quest and it was found that only by introducing

radical simplifying assumptions could any progress be made. This phase

of development is associated with Terzaghi and Rendulic - both engineers

- and with the mathematician Maurice Biot. The nature of their

contributions reflect their difference in outlook and objective. Biot

developed a rigorous and self-consistent theory (6) based on the

assumption that the soil skeleton behaves as a porous perfectly elastic

medium, although this is only a crude approximation to the known behavior

of real soils. Terzaghi, on the other hand, tried to avoid commitment to

particular constitutive relations between components of strain and

effective stress and he succeeded, but only at the cost of implying that

during consolidation (under constant loading) all components of total

stress remain constant everywhere (7i8). n reviewing these theories in

1943 (9) Terzaghi remarks "...the existing theoretical methods for

dealing with two- and three-dimensional problems of the consolidation of

clay under load are not yet ready for practical application". Owing to

the complexity of the problem progress was slow, but by 1969 the

consequences of these two differing approaches had been examined in a

sufficient number of particular cases for some general conclusions to be

drawn by Schiffman and co-workers (10).

In all these studies the assumption was invariably made, either

tacitly or explicitlv, that during consolidation the effective stress-

strain relations are linear, the coefficient of permeability of the soil

remains constant and that the strains and deformations of the soil are

small. However, these factors can have an important influence on the "-j-
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progress of consolidation, in particular upon the magnitude and changing

pattern of pore water pressure distribution. More recently engineers

have sought to remove those restrictions from the theory, but owing to

the complexity of the general case have confined their attention to

problems of one-dimensional compression and flow (see, for example, 4 17 %

18). Contemporaneously, Biot's work has been extended to large strains

and deformations (19,20,21,22), but the "soil" considered remains highly

idealized.*

3. The Present Study.

The typical problem with which we are concerned here is the

consolidation under its own weight of a mound of soft saturated clay

which has been placed beneath water. It has been assumed that the

strains and deformations that may develop during consolidation are large:

% that is, account must be taken in the theory of the variation of

compressibility and permeability during consolidation.

Attention has been restricted to two-dimensional pore-water flow and

one-dimensional soil deformation. The details of the analyses are given

in Appendixes A (Eulerian description) and B (Lagrangian description).

Appendix C formulates the governing relationships for an axially

symmetric geometry using a Lagrangian description. The most promising

approach seems at present to lie with a Lagrangian description allied

with the void ratio (e) as the dependent variable. The governing

equations (1319, B326) which result are non-linear and must be solved

numerically using an iterative procedure.

A numerical study of specific cases may reveal that strains and

deformations are not unduly large, in which case alternative

approximations to those adopted may prove to be more appropriate. This

is likely to be helpful if the more general problem of successive

*We remark that a theory of large strain consolidation which

regards the coefficient of permeability as a soil constant is a
contribution exclusively to Applied Mechanics.
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accretion of material on an existing mound is to be treated economically,

although the present theory can, in fact, be used to cover this case.

4. Numerical Analysis: One-Dimensional Theory

Several numerical analysis techniques can and have been applied to

the equation governing one-dimensional consolidation. These include an

implicit finite difference technique (23), and explicit finite difference
technique (24)* and the method of lines (25). The finite difference

procedures approximate the spatial derivatives by centered differences

and the time derivative by a forward difference. The method of lines is 6.

a classical method which reduces a partial differential equation to a

system of ordinary differential equations by discretizing all but one of

the independent variables. Given a partial differential equation of the

form of equation (A22) and using a centered difference approximation for

the spatial coordinate, one obtains a system of ordinary differential

equations of the form

au.
f(t,u, 2, ... u): i = 1,2 ,m (1) h"

29 m

where there are m spatial mesh points.

The system of ordinary differential equations is solved by an

implicit technique. An Adams-Bashforth predictor is used in conjunction

with an Adams-Moulton corrector. If the system of equations (1) is

stiff, the predictor-corrector method is coupled with Newton's method to

solve the nonlinear equations bv iteration (26).

A number of software packages exist for the purpose of solving one-

dimensional nonlinear finite strain consolidation problems.

A suite of packages have been developed by Bromwell Engineering,

Inc. (now Bromwell and Carrier, Inc.) of Lakeland, Florida.

These packages are based on the governing equation expressed in

terms of the excess pore water pressure. They use an implicit

We prefer the explicit technique since, unlike the implicit
procedure, a stability criterion exists.

-4-
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finite difference solution technique. These programs assume that

the void ratio-permeability and void ratio-effective stress

relationships are governed by power laws. They have been used in

practice in the design and analysis of dredged fills and mine

waste planning (23,27,28).

* A series of programs have been developed at the University of

Colorado and at the Waterways Experiment Station. These programs

have been based on the assumption that the void ratio-effective

stress and void ratio-permeability relationships are exponential

functions. These programs are based on a governing relationship h.

where the void ratio is the dependent variable. An explicit

finite difference procedure has been employed to solve the

governing equation. The programs developed at the University of

Colorado were developed primarily for research purposes (17).

The second generation programs developed at the Waterways

Experiment Station were designed primarily to assist in the

planning of dredge fill operations (29,30).

The University of Colorado has developed a series of programs .'- -

which are unrestricted with respect to the form of the void

ratio-effective stress and void ratio-permeability relationships.

These programs are based on the void ratio as the dependent

variable in the governing equation. They use the method of lines

as the numerical procedure of choice. They have been used for

research purposes and to analyze mine waste and marine

geotechnology problems (18 3 ,32 33 34 35 36 37).

A program developed for Ardaman and Associates, Orlando, Florida

has been reported (38). Unfortunately, at the time of this

writing, there are insufficient details available concerning the

algorithms, numerical method and use of this software item.

-5-
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5. Numerical Analysis: Two-Dimensional Theory

There are four numerical procedures which can be applied to the

governing equation for two-dimensional nonlinear finite strain

consolidation developed in the Appendices.

First, an explicit finite difference procedure can be developed. In

this procedure the spatial derivatives can be expanded in terms of

centered differences, at time t. The time derivative can be expanded as

a forward difference. This will result in an explicit difference

equation. The time marching procedure should be investigated for

stability. However stability will be assured if each mesh size Aa and L
Ab and the time increment At meets the stability criterion for the

two-dimensional problem at each time step.

The second procedure is implicit. Here the spatial derivatives are "

expanded in terms of centered differences at time (t + At). This pro-

cedure will establish a set of simultaneous equations for which an

alternating-direction implicit procedure may be feasible. However, the

stability criterion for implicit formulations is not established.

The third suggested procedure is a variation of the method of lines

described previously. Here a system of ordinary differential equations

of the form (see Appendix D)

ae.. i = 1, , ., .,

1 f  f(t,e..); (2)8 t =

is obtained. The one-dimensional results in m ordinary differential

equations. This two-dimensional problem results in mxn ordinary

differential equations. These equations can be solved by the same

techniques as discussed for the one-dimensional formulation. This method

is always stable.

A fourth possible method would apply a finite element discretization

to the spatial variables along with an explicit time marching scheme.

This approach has the disadvantage that a variational principle for this .'

class of problems must be established a priori.

-6-
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It is noted that the governing (B19) equation contains an integral

term from equation B25). This can be discretized by means of Simpson's

rule.

The suggested solution algorithm is as follows:

• Given the boundary vilue problem in terms of the void ratio a

solution is developed for e(a,b,t).

" The vertical effective stress 0'(a,b,t) is determined from the

void ratio-effective stress relationship which is known a priori.

" The vertical total stress o(ab,t) is determined from the bulk

equilibrium relationship

Da +  
+ -n)P] r l+e - (3)

a ~f L I+eJ

. The static pore water pressure u (a,b,t) is determined by
0

integrating the fluid equilibrium relationship,

au C"--
0 l+e (4)

aa l+e% f =0 (4)

(We note that this assumes a constant level of height of water

above the base of the clay layer. The consideration of a

variable free water surface is a trivial extension to this

algorithm.)

Each a station at each time of interest is converted to the

appropriate station by

(a,b,t) f !+-e(a' b,t da' (5)
0 '+ W -b, 0)

The development of a detailed step-by-step algorithm and the code to

implement the algorithm are beyond the scope of the current contract.

-7-
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APPENDIX A

In this Appendix we consider the case of pore-water flow and soil

skeleton deformation restricted to two dimensions (the x,z-plane) and we

seek to derive the equations governing the motion of these phases by

adopting the so-called Eulerian scheme of description. We therefore

consider the soil grains and water which at any time (t) reside within

the rectangular element of sides (x, dz) located at the point (x,z).

We denote by (wx, wz) the velocity components of the solid phase and

by (v,, vz ) those of the pore water. These components will be functions
of the three independent variables (x,z,t).

1. Equations of Continuity

The volume porosity (volume of void space V per unit of bulk
v

volume V) we denote by n, so that

n = V /V

while the area porosity (area of void space A per unit of bulk area
v

A) we denote by n If the number of grains occupying the rectangle
a

is in some sense large, it can be shown that

n n.
a

The rate of increase of weight of solids within (6x, 6z) must equal the

net rate of flow of weight across the four faces of the element and this

leads us to the equation

[(i-n)p + L [w Cl-n)P I + L 1w (l-n)p 0 (Al)

where p is the unit weight of the solids.

Similarly, for the pore-water

-12-
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[np,] + -[vInp + [v np,]= 0 (A2)

where Pf is the unit weight of the fluid. These are the equations of

continuity.

Since, in the range of stress with which we are concerned, the unit

weights Ps P can be regarded as constants, it follows from (Al) and

(A2) by addition, that

Inv + ( 1 ] + [nv + (1-n)w1 =0 (A3)

2. Flow Rule

We shall assume that the pore-water moves through the soil skeleton

in accordance with Darcy's law, due account being taken of the fact that

it is the relative velocity between the phases which induces a drag on -

the soil skeleton. Accordingly, we write

k
n(v - w ) = (A4)

x x Pf ax

k
z at]

n(v -w) = (A5)

where (kx, k ) are the coefficients of permeability appropriate to the
z

(x,z) directions and u is an excess pore water pressure which is

defined in terms of the pore-water pressure (p) by

u = p + P fz + const. (A6)

where the positive direction of z is against gravity.

3. The Governing Equations

If we set (A4), (A5) in (A3) we find that

a a au FanILl+ a--[k I- = fL r _ -_i +A
_X a wx ]:::-

-13-
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and it can be seen that if the soil skeleton is stationary (w = ,-xA
w = 0), then a familiar equation governing the excess pore-water

pressure is obtained, namely

- [kx + - [k " "  0 . (AS) ."

It is worth noting that just after dumping a mound, w = 0 and w z 0x Z

almost everywhere and so (A8) holds at this instant: this equation again

holds when consolidation is complete.

Now, from (Al)

3w wDx a z I 1 n n 3n j

x + 0z -- f t + w× ii + wZ  (A9)

and eliminating the rate of soil skeleton dilatation between (A7) and

(A9) we find

k k

a~x ~i ~ z ] + P. Zn(I1-n)] ((A)
axLPF ax 8z L Pf zJ Dt

where the operator D+wa

---- -- + w - + w ---

t W x ;x z 3 -

In order to proceed further the relations connecting strain increments

with the effective stresses and the effective stress increments must he

assumed. These relations, together with the equations of equilibrium,

would allow a complete theory to be developed. However, in view of the

wide variety of soil types and their complicated response to load, a

completely general approach is at present not feasible.

-14-

................................



We shall therefore proceed in the spirit of Terzaghi and Rendulic's

early work and seek plausible simplifications which will permit solutions

to be obtained to problems which will be sufficiently exact for

engineering purposes.

4. One-Dimensional Compression

We shall assume here that the development of a mound takes place in

a number of stages each consisting of the sudden dumping of soil followed

by a period of consolidation during which no further loading occurs.

During the consolidation it will be assumed that:

(a) Lateral displacement of the soil can be ignored.

The mound will therefore consolidate with the development of

vertical strains only but the pore water flow we shall not assume to be

constrained in any way.

The porosity (or void ratio) at any point in the clay will depend on

the initial porosity and state of effective stress there and also upon

the subsequent development of the components of effective stress as

consolidation proceeds. The detailed effective stress-strain behavior of

soils is very complicated and to obtain an engineering solution to the

problem we introduce the following simplifying assumptions.

(b) The void ratio (e) of a soft saturated clay depends to a good

approximation only upon the major principal effective stress a

(the so-called "American Hypothesis"; see, for example, ref. 13-15)

(c) The major principal stress is (almost everywhere) equal to the

vertical stress a (see Ref. 16) in a mound-like structure. It
ZZ

follows from these two assumptions that

e e(a1') = e(a') (All)

For simplicity of exposition we restrict our remarks to the case where

k = k k(const); the more general problem can if required readily be
x z

treated later in detail. Equation (A10) can be written in the form:

-15-



k_ V2u = I de zz (ADo2)

Pf (l+e) dayr Dt Z A

where

D a aV
-+ w (A 3

Dt t Wz @z(A)

Since

a p

zz zz
DO "

c2p Dp D zz CA14)
v Dt Dt

where

k(=+e) 1Cv O d e ""

which is, apart from the factor (l+e) in place of (1+e), Terzaghi's
0

coefficient of one-dimensional consolidation.

5. One-Dimensional Consolidation

It is worth noting that in czusps of strictly one-dimensional

compression and pore water flow, the above assumptions (a), (b) and (c)

are satisfied and equation (A4) "

2 Do
c _2_p Dp Do.- .

Dp _ (A15)

v 2 Dt Dt
3z

is exact.

This equation governing the pore water pressure has a structure very

similar to that encountered in Terzaghi's theory and indeed his equation

can be recovered by replacing the differential operator D/Dt by 3/at.

From (AI3) this can be seen to be tantamount to ignoring, for example,

w ap/az compared with ap/at.

There is no a priori reason to suppose that this can be justified.

Some indication of the error involved can be found from A3) which

reduces to

-16-
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1v + (1-n)w
z1

when there exists a plane on which the condition v w = 0 persists. "

(This is so in the oedometer test: the mid-plane with two-way drainage,

or tI-h.ase if there is no flow from it.) It then follows from (A16) and

( AS5) that

k a,-
.- =

Z P f as

and so, for example:

Du au *k_(u

)2\'z 
(AL7) " -

Dt at

What then is the equation governing the pore-watier pressure which is

exact within the context of the assumptions made in the theory, when the

Eulerian description is used? -

We commence from the form of (AM5) which allows for the variation of

permeability, namely

1 Lu 21 = "  
D (ADo) ,

M Pf z- Dt Dt

where, from (A6):

Dpa u k ao[ au r au"
Dt t-T + --z -(A19)

Also,

Do au a"azz zz k au zzT - t + ( z "'',

but vertical equilibrium requires that

zz
as O-f (A2 1)

f. 
"

-17-
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Setting (A21) in (A20) and subtracting the resulting equation from (A19),

it is found that (A18) becomes

I ( a 2 k(p Pf)ai ~ a
_9u zz (A22)' .

V [ - P az, (l+e)Pf z at at (A--.v ..' f z

Using (A6) a similar equation can be derived for the pore-water pressure
(p). -- '-'-

This equation is highly non-linear even in the "thin" laver case

(Ps pf) and its use in problems of large displacement and strain is
f

limited for the following reasons:

(i) The parameters k and m are related to the void ratio e, but

this in turn is not connected to u (or p) in a straightforward

way.

(ii) The vertical total stress a and its time derivative aa /at
zz ZZ

for a fixed value of z varies with time in a way which is not

given as part of the data of the problem and must be discovered as

part of the solution:

(iii) The geometry of the mound boundary on which a condition of the

type u 0 persists is, again, not known ab initio and must be

found during the solution process.

However, one distinct advantage of working in terms of u is that the r
initial conditions can be specified in terms of the initial state of

total stress in the mound. This allows a more complete and exact

description than can he achieved when the void ratio or porosity is used

as the independent variable (see Appendix B).

A rather more promising governing equation emerges if the porosity

(n) is taken as the dependent variable. Commencing from (AIO) we can

wri t e

a k - ( -+ v 'n. (A23)

Pf 3zL3zJ (1-n)Ld t s Izj

Now

-18-
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uf zz zz (A24)Tz Tz f Z Z- + Pf f

so that using (A21)

au dor' an
=u -(l-n)(psp dn an (A25)s f dn z"

Setting this expression into (A23) we find, after some algebra, that

a an an [P ] [k-) 2] Inl.CA6ic [+ - 1] [kz- (A26) ::::

which is essentially equation (23) of (5). It is not open to objections

i) and (ii) above. the difficulty (iii) remains but it has been claimed*o

that this can be overcome by using suitable numerical techniques*.

*Lee and Sills (Ref. 5) use a numerical techniq~ue originating from

work by Crank and Gupta (12)which effectively updates the position of
the moving boundary as the solution proceeds. They take the case of a
"thin" soil layer where the approximation ps =p can be justified onf f

physical grounds, and compare their numerical solution with that given by *.

Gibson, England and Hussey (Ref. 4). The agreement is apparently4
excellent, but is not wholly convincing as the coefficient c in ref.

2 2  2
is taken incorrectly as c,,. c v/(l+e) instead of c F c cv (l+e 0 /(l+e).

-19-
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APPENDIX B

In this Appendix we consider the physical problem discussed in L.
Appendix A, in particular the case of two-dimensional pore-water flow and

one-dimensional compression in a submarine clay mound. However, here we

use the Lagrangian scheme of description and examine the motion of an

element of soil which contains the same solids throughout its history.

For reasons mentioned in Appendix A we shall not seek to derive an

equation governing the pore-water pressure (or an excess pore-water

pressure), but rather work in terms of the void ratio (e) or the porosity

(n). The same physical assumptions used there will again be adopted

here. The argument which ensues follows closely that used in ref. 4 and

we shall not repeat the details here.

1. Equations of Continuity

The deformation of the soil skeleton is described by following the

motion of an element of' initial area (da x 6b) lying at t = 0 at

(a,h)* which during its subsequent motion always contains the same

solids. The location of a material point initially at (a,b) is given

subsequently by a= (a,h,t) (BI)

n = n(a,ht) (02)

where, by definition,

a =(a,b,O) (B3)

b (ab,,) .(B4)

The coordinate a points upward against gravity.
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APPENDIX B

In this Appendix we consider the physical problem discussed in

Appendix A, in particular the case of two-dimensional pore-water flow and

one-dimensional compression in a submarine clay mound. However, here we

use the Lagrangian scheme of description and examine the motion of an -

element of soil which contains the same solids throughout its history.

For reasons mentioned in Appendix A we shall not seek to derive an

equation governing the pore-water pressure (or an excess pore-water

pressure), but rather work in terms of the void ratio (e) or the porosity

n). The same physical assumptions used there will again be adopted

here. The argument which ensues follows closely that used in ref and

we shall not repeat the details here.

1. Equations of Continuity

The deformation of the soil skeleton is described by following the

motion of an element of initial area (6a x 6b) lying at t = 0 at

(a,h)* which during its subsequent motion always contains the same

solids. The location of a material point initially at (a,b) is given

subsequently by

= (a,h,t) (B1)

1 = n(a,b,t) (B2)

where, by definition,

a = (a,b,O) (B3)

b = q(a,b,O) ( M)

*The coordinate a points upward against gravity.

-20-
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Since we shatl assume that the motion of the soil skeleton is confined to

the a direction it follows that CB2) may be replaced by

b .(B2)_bis

The equation of continuity of solids takes the simple form

1-n
_ -no le (05)

aa i-n l+e 0

where

no =n(a,b,O)

= e(a,b,O)

are, respectively, the initial (t = 0) porosity and void ratio at (a.b).

As the element translates and deforms during its subsequent motion,

pore-water moves into and out from its four faces and the equation of

continuity of this (incompressible) phase is found to be

n r(vw + v -fl + n 0 (BO)ra a- a r" b 8a " aa

2. Flow Rule

Darcy's Law takes the form*

n.v -w 07,-
a a Pf (7

S---- -k 3u
b b Pf Tn CR8)

with this description, but since

au au 3 (Bg)
aa at aa '.--"""-

Da, ' 3a

* We have taken k = k k here, but the extension to the
z b

anisotropic case is trivial.

-21-
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au au (BIO)

and wb = 0 (BI1)

it follows that

n(vw ) g k u (B2)
a a a = f a (2

- L 3u (B13)nb = Pf b .:.

The excess pore-water pressure (u) is related to the pore-water pressure

(p) by

U p + Pf - const. (14)

3. The Governing Equations

Setting (B12) and (B13) in (B6) we find

2u (-'+ + a le aul _ el B
Od G Fi_ 3b i1e 0  Pf rbJ -t [I-ej- -IA / ~ i -

where (B5) has been used. Using now CR5) arid (814), equation CR15) can '.

be expressed in terms o the pore-watr peesi~sr:

a '0+ a /3kIR( +e] I at

~Ta PJs ~ abp _fb kl-eo/J = C+e) at (B16)

Vertical equilibrium requires that

+ [npf + (-n)p] a CR17)

where q is the vertical total stress, :1(0 this nay be used in .

conjunction with

p o- a' (B18)
.

-22-
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which defie h vertica efctve strs W) to elmiae pfom
(B16). .

The resulting equation governing the void ratio (e) 4,s --.

. -'

3 k Ie L] I D
1 fF ei} (+e_.o) 4., d1eo 3t

..

in the general case, which reduces when e(0 is a constant to from

e 1 [ , 2 1 de
--; F% ae + L CI-eo - e - - ( d k ae

I [c+e a'a e 3 a] 3b F1+e ab GS1 -al d I 0+ a

- e
+ 0+e (B19)

ei!r (as in Ref. ~)the caefficient of finite consolidation

C k (B C20)
cF - l+e) de

and GS = P5 /P C021)s f-

4. The Total Stress Term

The last term on the left-hand side of (B19) is not known a ri .

and must be found and updated during the solution. In this Section we

show how the term aa/3b can be found at any time from the current void

ratio distribution e(a,b,t).

Consider a vertical -,ylinder of material, of unit cross-sectional

area, extending from the base of the mound to the water level above the

mound and denote th;.s heLght by H. It is evident that the weight of

material (solids and water) 4ith n this cylinder would remain constant if

no water flowed across the surfaces (i.e., strict one-dimensional

consolidation) or was added (H = constant). Under these conditions

ao/3b on the base depends on b alone. However, on the sirfact! of

-23-



the mound a = a (b) settlement increases the water pressure and hence f' .
0

the total vertical stress there. Thus at the top of the clay aa/3b

depends both on b and t. At any other height a, or when the

conditions of simple vertical flow of pore-water no longer obtain or H

varies with time, the term ao/ab can be expected to depend upon

(a,b,t). We shall now determine this relation.

Integrating (B17) with rspect to a, and using (B5), it is found

that

ao(b) ao(b)

a= pe - da + Pd f ae-oda + Pf[H(t)-(a 0 (b),b,t)] (B22)
a 0 a 0

where the last term represents the water pressure on the surface

a = a(b) of the mound, which equals the total stress a in (B22) when

a ao(b).

From (B5):

a btl(~~t +e(abt)'.-"
0a b,t) f +e(a,b) da (B23)

since &(O,b,t) 0. Substituting (B23) into (B22) and rearranging, it

is found that*

a a0

.. = pH - pf (e)da + (P-Pf) f l0 (B24)f 1e)s f 1 +e0  ..:
0a 0

It follows from CB24) that

a da 0
ab Of 0 \ l+eo (es-Pf db a Bb te

(B25)

*The first term represents the weight of water if it completely

filled the cylinder from the base to the water surface. The second term
is the weight of water if it filled the cylinder from the base to the
height (ah,t) at which a is acting. The last term is the buoyant
weight of solids above the plane on which a acts.

-24-
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which reduces in the case e0 = const. to

3a (ps-p ) da0  Pf a
= f _ff ae da (B26)

ab 1+e db l+e 0 3b
000

the first term arising from the initial non-uniform surface profile of

the mound, the second being a time-varying correction to this resulting

from the settlement.

5. Some Typical Boundary Conditions

If a mass of saturated clay of more-or-less uniform void ratio e0

is deposited in a short period of time beneath water and rests on (say)

an impervious base, the void ratio distribution in the mound at

subsequent times will, on the basis of the assumptions that have been

made herein, be governed by (B19) with (B26) and subject to:

(a) the initial condition

e(a,b,O) = e0 (constant); (B27)

(b) the mound surface boundary condition

e(ao(b),b,t) = e0 (constant); (B28)

(c) the impervious base condition

w (O,b,t) = 0 (B29)a

va (O,b,t) = 0 (30)

which result in the following condition on the void ratio:

(p -p )3e s f de = 0 (B31)

Oa0 TFda'

on a = 0.
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APPENDIX C

In this Appendix the equations governing the consolidation of a

submarine clay mound under conditions of axial symmetry are derived in

Lagrange coordinates. The work described in Appendix B was confined to

plane flow of pore-water and would approximate the conditions encountered

in long mounds of uniform cross-section away from the ends. The present

treatment extends, therefore, the study to mounds of compact form which

can be approximated by bodies within a surface of revolution about a

vertical axis.

The physical assumptions and notation adopted in Appendix B will be

retained here and the development below should be read in conjunction

with that work upon which it relies heavily.

1. The Physical Equations

The initial coordinates of a point of the soil skeleton are (a,b)

where a is taken as vertically upward against gravity and b is now a

radial distance measured horizontally from the axis of symmetry of the

mound.

The continuity equation of the solid phase retains the form

3E_ I+e Ccl)
aa l+e

0

but that of the pore water now becomes

-n~va-Wa)] + L nvb a] +  nv 0 (C2)a b aa t a b a

The flow of the pore water is still governed by the pair of

equations

= .~."-.~;
a)a k 3u---.n(v a-W a) ( f C3) ..

k au
nv = (C4)
b (c3b

f
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Setting (c3) and (C4) in (C2) and using (C), we find that

au ia ] + - 3 [ b I b +e e

a a lP J b3b b 1+e T- 0e . (C5)

The spatial gradients of the excess pore water pressure (u) are

related to those of the pore water pressure (p) through the equations

au +e a e -+ec

aa L+e / aa (I+ej f C

au ap (C7)
3b ab

which allow (C5) to be written in terms of the poro water pressure and

the void ratio (e).

When the equation of vertical eouilibrium, nameLy

+ [npf + (1-n)p] -g = o ,C ).

is made use of, together with the definition of the vertical effective

stress

o' =o-p , (Cq)

equation (C5) can be written in terms of the void ratio (e) above as

a CF a,1  ia r k e ]0 a [b )+ lb + -- Cb l+e)3 CFDb- .
-a~~~~~~~- -a 1 T; PfI ~ e C

- s1) de I+e 3a l+e at (CO)
0

which is the axisymmetric form of equation (B19) and the governing

equation we seek.

In all other respects the results arrived at for the case of plane

pore water flow, and documented in Appendix B, hold mutatis mutandis for

this case also.
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APPENDIX D

In this Appendix we formulate the basic procedure for the method of

lines. This is the method we suggest for the solution of the governing

equations presented in the previous appendices.

We consider a governing equation of the form given by equation

(B19). In a general form this equation can be written as
2 2 2

A(e) -2e + B(e)(L.) + C(e) -!-e + D(e)(-) + E(e) .e _ .)e (D)
a a 3b2 a at

The method of lines consists of a procedure in which all but one of

the independent variables are discretized. This yields a coupled system

of ordinary differential equations. For the equation given by (Dl) we

choose to discretize a into m equidistant mesh points, having

coordinates (a.: i = 1,2,...,m) and b into n equidistant mesh points,

having coordinates (b.: j 1,2,..., n).
. .

The partial derivatives are approximated at the mesh points by

(ae e - , (D2) -.

a,.. 2(Aa)

2e -2e. .e
2 (D3)ai ,j (Aa) 

2

with similar expressions at (i) and (j-1), () and (j+l) for the

derivatives with respect to b.

The discretized system of governing equations now becomes

A(e ) + B(ei ' ) 2Aa, t(Aa) 2

C(e e i e ,2e. +1 1.,'\ + ( ei, +-e, 1 .2

1, (Ab) ,

e -e, ae+ e(e, i 2-a - 1t (04)
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where i 1,2,... ,m and j = 1,2,... ,n. Thus we have a system of mxn

ordinary differential equations.

1. Method of Solution

The system of ordinary differential equations (D4) is solved by an

Adams-Bashforth predictor which is used in conjunction with an

Adams-Moulton corrector (26).

For the purpose of developing the formulation of the method we

concentrate on a single equation of the system given by equation D4).

We aim to obtain the solution to V

de = f(t,e(t)) (D5)

in the closed interval [O,tfi], where f(t,e(t)) denotes the function

representing the left hand side of the chosen equation from the system

D4). To accomplish our objective we divide the closed interval [Otfin]

into a set of time steps (t 0 ,t 1 ... ,t ) such that (to = 0) and

(t t ) We obtain the solution at these time steps. The basic
p f in

computational task relates to the advancement of the numerical solution

to (tk+1) after having computed the value of (e) at time (tk)

We note that

tk+lI

e(tk+l) = e(tk) + de at (D6)
t dttk'

or from equation CD5)

e(tk+ I) = eftk) + ft  f(t,e(t))dt CD7)
tk

The Adams method approximates the solution by replacing f(t,e(t))

with a polynomial P (t) of order () which interpolates the computed

derivatives at the preceding points from the set of discrete time values

and then by integrating the polynomial. Thus the polynomial P (t)

must satisfy the following condition

-29-



P (t ) f(t ,e(t.)); i 0,1,2 ... ,k

tk i

The expression -.'

) + jk+ 09)".d

ek+l = e(t ) k l k (D9)

defines the (QEth) order predictor of the solution eft )~ at timeF(tk+l 1
By choosing a constant time step

t = tk- + h , k = 1,2,...,p (D1)
k k-I

the backward formulation of the predictor is given by

z]7i-I ..

ekI e(t ) + h 7 y f (DII)
k i=l k-I k

where

f f(tk' e(t 0 (.12)

(tk )(tt-k-Ik i dt (D3)

tk

and the backward difference operator Vi  is defined as *-

-I --I- i-
k k k k-I (D14)

where we note that

0 (D1fa)

t h

For purposes of efficiency with respect to the time to solve the ".

system of differential equations the Adams method uses a variable time' "

step (hk) and a variable order of the predictor. The backward difference o"t'idfn a

formulation is replaced by a modiied divided difference formulation.

0-

.............

.. f f 0-. .. ..- ).
. --0-5b

k k k k-
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Given the prediction ek+l as computed above we evalute its

derivative with respect to time ek+1 by
..=- I...!

k+l L,k k+l k+16

The corrector to solv.: for e(tk) is formulated as
k+ , i.' V

e(t )=e(t )+ 1 lP (tOdt D7
ki k 1+1,k

tk

The polynomial P (t) interpolates the same data as P (t)
L+I ,k L,k

with an additional point, namely

+ (t k+l) = fk+l (Dl8)

It now remains only to evaluate f(t k+l' e(t k+) for the next time

step.

The algorithm described (26) uses low orders of the predictor

polynomials (P). This maximizes the stability properties. The order of

the predictor polynomial is accomplished separately from the time step

select ion.

The time step is determined as the largest value for which the local

error meets a given input tolerance. The control of the local error

assumes that the local solution is uniformly approximated over the closed

interval [tk, tk+l]. The local error is controlled per unit time step;

i.e. relative to the size of the step. Using this procedure the solution

overshoots the last time (t fin). Since the approximation is uniform

over the whole interval, however, an interpolation provides the solution

at the required value of time.

The procedure sets all the parameters for continuation of the

predictor-corrector process. Thus a computation at a predetermined

sequence of time is provided by this algorithm. 
4-
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